日韩无码专区无码一级三级片|91人人爱网站中日韩无码电影|厨房大战丰满熟妇|AV高清无码在线免费观看|另类AV日韩少妇熟女|中文日本大黄一级黄色片|色情在线视频免费|亚洲成人特黄a片|黄片wwwav色图欧美|欧亚乱色一区二区三区

RELATEED CONSULTING
相關咨詢
選擇下列產品馬上在線溝通
服務時間:8:30-17:00
你可能遇到了下面的問題
關閉右側工具欄

新聞中心

這里有您想知道的互聯網營銷解決方案
創(chuàng)新互聯Python教程:如何利用Python進行垃圾分類

1 引言

成都創(chuàng)新互聯為企業(yè)級客戶提高一站式互聯網+設計服務,主要包括成都做網站、成都網站設計、成都外貿網站建設手機APP定制開發(fā)、微信小程序、宣傳片制作、LOGO設計等,幫助客戶快速提升營銷能力和企業(yè)形象,創(chuàng)新互聯各部門都有經驗豐富的經驗,可以確保每一個作品的質量和創(chuàng)作周期,同時每年都有很多新員工加入,為我們帶來大量新的創(chuàng)意。 

七月了,大家最近一定被一項新的政策給折磨的焦頭爛額,那就是垃圾分類。《上海市生活垃圾管理條例》已經正式實施了,相信還

是有很多的小伙伴和我一樣,還沒有完全搞清楚哪些應該扔在哪個類別里。感覺每天都在學習一遍垃圾分類,真令人頭大。

聽說一杯沒有喝完的珍珠奶茶應該這么扔

1、首先,沒喝完的奶茶水要倒在水池里

2、珍珠,水果肉等殘渣放進濕垃圾

3、把杯子要丟入干垃圾

4、接下來是蓋子,如果是帶蓋子帶熱飲(比如大部分的熱飲),塑料蓋是可以歸到可回收垃圾的嗷

看到這里,是不是大家突然都不想喝奶茶了呢,哈哈。不過不要緊,垃圾分類雖然要執(zhí)行,但是奶茶也可以照喝。

那么,這里我們想討論一下,人工智能和數據科學的方法能不能幫助我們進行更好的垃圾分類?這樣我們不用為了不知道要扔哪個垃

圾箱而煩惱。

2 思路

這問題的解決思路或許不止一條。這里只是拋磚引玉一下,提供一些淺顯的見解。

第一種方案,可以把垃圾的信息制成表格化數據,然后用傳統(tǒng)的機器學習方法。

第二種方案,把所有的垃圾分類信息做成知識圖譜,每一次的查詢就好像是在翻字典一樣查閱信息。

第三種方案,可以借助現在的深度學習方法,來對垃圾進行識別和分類。每次我們給一張垃圾的圖片,讓模型識別出這是屬于哪一種

類別的:干垃圾,濕垃圾,有害垃圾還是可回收垃圾。

3 圖像分類

圖像分類是深度學習的一個經典應用。它的輸入是一張圖片, 然后經過一些處理,進入一個深度學習的模型,該模型會返回這個圖片

里垃圾的類別。這里我們考慮四個類別:干垃圾,濕垃圾,有害垃圾還是可回收垃圾。

(報紙 :可回收垃圾 )

(電池 :有害垃圾 )

(一次性餐盒 :干垃圾 )

我們對圖片里的物品進行分類,這是圖像處理和識別的領域。人工智能里提出了使用卷積神經網絡(Convolutional Neural Network, CNN)來解決這一類問題。

我會用keras包和Tensorflow后端來建立模型。 由于訓練集的樣本暫時比較缺乏,所以這里只能先給一套思路和代碼。訓練模型的工

作之前還得進行一波數據收集。

相關推薦:《python視頻教程》

我們就先來看看代碼大致長什么樣吧

先導入一些必要的包。

再做一下準備工作。

在上面,我們初始化了一些變量,batch size是128; num_classes = 4,因為需要分類的數量是4,有干垃圾,濕垃圾,有害垃圾

和可

回收垃圾這四個種類。epochs 是我們要訓練的次數。接下來,img_rows, img_cols = 28, 28 我們給了圖片的緯度大小。

在 .reshape(60000,28,28,1)中 , 60000 是圖片的數量(可變), 28是圖片的大小(可調),并且1是channel的意思,channel = 1

是指黑白照片。 .reshape(10000,28,28,1)也是同理,只是圖片數量是10000。

到了最后兩行,我們是把我們目標變量的值轉化成一個二分類, 是用一個向量(矩陣)來表示。比如 [1,0,0,0] 是指干垃圾,[0,1,0,0]

是指濕垃圾等等。

接下來是建模的部分。

我們加了卷積層和池化層進入模型。激活函數是 relu,relu函數幾乎被廣泛地使用在了卷積神經網絡和深度學習。我們在層與層之間

也加了dropout來減少過擬合。Dense layer是用來做類別預測的。

建完模型后,我們要進行模型的驗證,保證準確性在線。

到這里,我們的建模預測已經大概完成了。一個好的模型,要不斷地去優(yōu)化它,提高精確度等指標要求,直到達到可以接受的程度。

這優(yōu)化的過程,我們在這里就先不深入討論了,以后繼續(xù)。

4 總結

值得一提的是,盡管方法上是有實現的可能,但是實際操作中肯定要更復雜的多,尤其是對精度有著很高的要求。

而且當一個圖片里面包含著好幾種垃圾種類,這也會讓我們的分類模型開發(fā)變得很復雜,增加了難度。

比如,我們想要對一杯奶茶進行垃圾分類,照片里面是包含了多個垃圾的種類,這就比較頭大了,因為這并不是屬于單一的類別。

前路的困難肯定是有的,不過就當這里的分享是個拋磚引玉的起點吧。

畢竟李白也說了,“長風破浪會有時,直掛云帆濟滄?!薄?/p>
分享名稱:創(chuàng)新互聯Python教程:如何利用Python進行垃圾分類
文章URL:http://m.5511xx.com/article/dhgcgcc.html