日韩无码专区无码一级三级片|91人人爱网站中日韩无码电影|厨房大战丰满熟妇|AV高清无码在线免费观看|另类AV日韩少妇熟女|中文日本大黄一级黄色片|色情在线视频免费|亚洲成人特黄a片|黄片wwwav色图欧美|欧亚乱色一区二区三区

RELATEED CONSULTING
相關(guān)咨詢
選擇下列產(chǎn)品馬上在線溝通
服務(wù)時間:8:30-17:00
你可能遇到了下面的問題
關(guān)閉右側(cè)工具欄

新聞中心

這里有您想知道的互聯(lián)網(wǎng)營銷解決方案
Python進(jìn)階——如何正確使用yield?

 在 Python 開發(fā)中,yield 關(guān)鍵字的使用其實(shí)較為頻繁,例如大集合的生成,簡化代碼結(jié)構(gòu)、協(xié)程與并發(fā)都會用到它。

但是,你是否真正了解 yield 的運(yùn)行過程呢?

這篇文章,我們就來看一下 yield 的運(yùn)行流程,以及在開發(fā)中哪些場景適合使用 yield。

生成器

如果在一個方法內(nèi),包含了 yield 關(guān)鍵字,那么這個函數(shù)就是一個「生成器」。

生成器其實(shí)就是一個特殊的迭代器,它可以像迭代器那樣,迭代輸出方法內(nèi)的每個元素。

如果你還不清楚「迭代器」是什么,可以參考我寫的這篇文章:Python進(jìn)階——迭代器和可迭代對象有什么區(qū)別?

我們來看一個包含 yield 關(guān)鍵字的方法: 

 
 
 
  1. # coding: utf8  
  2. # 生成器  
  3. def gen(n):  
  4.     for i in range(n):  
  5.         yield i  
  6. g = gen(5)      # 創(chuàng)建一個生成器  
  7. print(g)        #   
  8. print(type(g))  #   
  9. # 迭代生成器中的數(shù)據(jù)  
  10. for i in g:  
  11.     print(i)   
  12. # Output:  
  13. # 0 1 2 3 4 

注意,在這個例子中,當(dāng)我們執(zhí)行 g = gen(5) 時,gen 中的代碼其實(shí)并沒有執(zhí)行,此時我們只是創(chuàng)建了一個「生成器對象」,它的類型是 generator。

然后,當(dāng)我們執(zhí)行 for i in g,每執(zhí)行一次循環(huán),就會執(zhí)行到 yield 處,返回一次 yield 后面的值。

這個迭代過程是和迭代器最大的區(qū)別。

換句話說,如果我們想輸出 5 個元素,在創(chuàng)建生成器時,這個 5 個元素其實(shí)還并沒有產(chǎn)生,什么時候產(chǎn)生呢?只有在執(zhí)行 for 循環(huán)遇到 yield 時,才會依次生成每個元素。

此外,生成器除了和迭代器一樣實(shí)現(xiàn)迭代數(shù)據(jù)之外,還包含了其他方法:

  •  generator.__next__():執(zhí)行 for 時調(diào)用此方法,每次執(zhí)行到 yield 就會停止,然后返回 yield 后面的值,如果沒有數(shù)據(jù)可迭代,拋出 StopIterator 異常,for 循環(huán)結(jié)束
  •  generator.send(value):外部傳入一個值到生成器內(nèi)部,改變 yield 前面的值
  •  generator.throw(type[, value[, traceback]]):外部向生成器拋出一個異常
  •  generator.close():關(guān)閉生成器

通過使用生成器的這些方法,我們可以完成很多有意思的功能。

__next__

先來看生成器的 __next__ 方法,我們看下面這個例子。 

 
 
 
  1. # coding: utf8  
  2. def gen(n):  
  3.     for i in range(n):  
  4.         print('yield before')  
  5.         yield i  
  6.         print('yield after')  
  7. g = gen(3)      # 創(chuàng)建一個生成器  
  8. print(g.__next__())  # 0  
  9. print('----')  
  10. print(g.__next__())  # 1  
  11. print('----')  
  12. print(g.__next__())  # 2  
  13. print('----')  
  14. print(g.__next__())  # StopIteration  
  15. # Output:  
  16. # yield before  
  17. # 0  
  18. # ----  
  19. # yield after  
  20. # yield before  
  21. # 1  
  22. # ----  
  23. # yield after  
  24. # yield before  
  25. # 2  
  26. # ----  
  27. # yield after  
  28. # Traceback (most recent call last):  
  29. #   File "gen.py", line 16, in   
  30. #     print(g.__next__())  # StopIteration  
  31. # StopIteration 

在這個例子中,我們定義了 gen 方法,這個方法包含了 yield 關(guān)鍵字。然后我們執(zhí)行 g = gen(3) 創(chuàng)建一個生成器,但是這次沒有執(zhí)行 for 去迭代它,而是多次調(diào)用 g.__next__() 去輸出生成器中的元素。

我們看到,當(dāng)執(zhí)行 g.__next__()時,代碼就會執(zhí)行到 yield 處,然后返回 yield 后面的值,如果繼續(xù)調(diào)用 g.__next__(),注意,你會發(fā)現(xiàn),這次執(zhí)行的開始位置,是上次 yield 結(jié)束的地方,并且它還保留了上一次執(zhí)行的上下文,繼續(xù)向后迭代。

這就是使用 yield 的作用,在迭代生成器時,每一次執(zhí)行都可以保留上一次的狀態(tài),而不是像普通方法那樣,遇到 return 就返回結(jié)果,下一次執(zhí)行只能再次重復(fù)上一次的流程。

生成器除了能保存狀態(tài)之外,我們還可以通過其他方式,改變其內(nèi)部的狀態(tài),這就是下面要講的 send 和 throw 方法。

send

上面的例子中,我們只展示了在 yield 后有值的情況,其實(shí)還可以使用 j = yield i 這種語法,我們看下面的代碼: 

 
 
 
  1. # coding: utf8  
  2. def gen():  
  3.     i = 1  
  4.     while True:  
  5.         j = yield i  
  6.         i *= 2  
  7.         if j == -1:  
  8.             break 

此時如果我們執(zhí)行下面的代碼: 

 
 
 
  1. for i in gen():  
  2.     print(i)  
  3.     time.sleep(1) 

輸出結(jié)果會是 1 2 4 8 16 32 64 ... 一直循環(huán)下去, 直到我們殺死這個進(jìn)程才能停止。

這段代碼一直循環(huán)的原因在于,它無法執(zhí)行到 j == -1 這個分支里 break 出來,如果我們想讓代碼執(zhí)行到這個地方,如何做呢?

這里就要用到生成器的 send 方法了,send 方法可以把外部的值傳入生成器內(nèi)部,從而改變生成器的狀態(tài)。

代碼可以像下面這樣寫: 

 
 
 
  1. g = gen()   # 創(chuàng)建一個生成器  
  2. print(g.__next__())  # 1  
  3. print(g.__next__())  # 2  
  4. print(g.__next__())  # 4  
  5. # send 把 -1 傳入生成器內(nèi)部 走到了 j = -1 這個分支  
  6. print(g.send(-1))   # StopIteration 迭代停止 

當(dāng)我們執(zhí)行 g.send(-1) 時,相當(dāng)于把 -1 傳入到了生成器內(nèi)部,然后賦值給了 yield 前面的 j,此時 j = -1,然后這個方法就會 break 出來,不會繼續(xù)迭代下去。

throw

外部除了可以向生成器內(nèi)部傳入一個值外,還可以傳入一個異常,也就是調(diào)用 throw 方法: 

 
 
 
  1. # coding: utf8  
  2. def gen():  
  3.     try:  
  4.         yield 1  
  5.     except ValueError:  
  6.         yield 'ValueError'  
  7.     finally:  
  8.         print('finally')   
  9. g = gen()   # 創(chuàng)建一個生成器  
  10. print(g.__next__()) # 1  
  11. # 向生成器內(nèi)部傳入異常 返回ValueError  
  12. print(g.throw(ValueError))   
  13. # Output:  
  14. # 1  
  15. # ValueError  
  16. # finally 

這個例子創(chuàng)建好生成器后,使用 g.throw(ValueError) 的方式,向生成器內(nèi)部傳入了一個異常,走到了生成器異常處理的分支邏輯。

close

生成器的 close 方法也比較簡單,就是手動關(guān)閉這個生成器,關(guān)閉后的生成器無法再進(jìn)行操作。 

 
 
 
  1. >>> g = gen()  
  2. >>> g.close() # 關(guān)閉生成器  
  3. >>> g.__next__() # 無法迭代數(shù)據(jù)  
  4. Traceback (most recent call last):  
  5.   File "", line 1, in   
  6. StopIteration 

close 方法我們在開發(fā)中使用得比較少,了解一下就好。

使用場景

了解了 yield 和生成器的使用方式,那么 yield 和生成器一般用在哪些業(yè)務(wù)場景中呢?

下面我介紹幾個例子,分別是大集合的生成、簡化代碼結(jié)構(gòu)、協(xié)程與并發(fā),你可以參考這些使用場景來使用 yield。

大集合的生成

如果你想生成一個非常大的集合,如果使用 list 創(chuàng)建一個集合,這會導(dǎo)致在內(nèi)存中申請一個很大的存儲空間,例如想下面這樣: 

 
 
 
  1. # coding: utf8  
  2. def big_list():  
  3.     result = []  
  4.     for i in range(10000000000):  
  5.         result.append(i)  
  6.     return result  
  7. # 一次性在內(nèi)存中生成大集合 內(nèi)存占用非常大  
  8. for i in big_list():  
  9.     print(i) 

這種場景,我們使用生成器就能很好地解決這個問題。

因?yàn)樯善髦挥性趫?zhí)行到 yield 時才會迭代數(shù)據(jù),這時只會申請需要返回元素的內(nèi)存空間,代碼可以這樣寫: 

 
 
 
  1. # coding: utf8  
  2. def big_list():  
  3.     for i in range(10000000000):  
  4.         yield i  
  5. # 只有在迭代時 才依次生成元素 減少內(nèi)存占用  
  6. for i in big_list():  
  7.     print(i) 

簡化代碼結(jié)構(gòu)

我們在開發(fā)時還經(jīng)常遇到這樣一種場景,如果一個方法要返回一個 list,但這個 list 是多個邏輯塊組合后才能產(chǎn)生的,這就會導(dǎo)致我們的代碼結(jié)構(gòu)變得很復(fù)雜: 

 
 
 
  1. # coding: utf8  
  2. def gen_list():  
  3.     # 多個邏輯塊 組成生成一個列表  
  4.     result = []  
  5.     for i in range(10):  
  6.         result.append(i)  
  7.     for j in range(5):  
  8.         result.append(j * j)  
  9.     for k in [100, 200, 300]:  
  10.         result.append(k)  
  11.     return result    
  12. for item in gen_list():  
  13.     print(item) 

這種情況下,我們只能在每個邏輯塊內(nèi)使用 append 向 list 中追加元素,代碼寫起來比較啰嗦。

此時如果使用 yield 來生成這個 list,代碼就簡潔很多: 

 
 
 
  1. # coding: utf8  
  2. def gen_list():  
  3.     # 多個邏輯塊 使用yield 生成一個列表  
  4.     for i in range(10):  
  5.         yield i  
  6.     for j in range(5):  
  7.         yield j * j  
  8.     for k in [100, 200, 300]:  
  9.         yield k     
  10. for item in gen_list():  
  11.     print(i) 

使用 yield 后,就不再需要定義 list 類型的變量,只需在每個邏輯塊直接 yield 返回元素即可,可以達(dá)到和前面例子一樣的功能。

我們看到,使用 yield 的代碼更加簡潔,結(jié)構(gòu)也更清晰,另外的好處是只有在迭代元素時才申請內(nèi)存空間,降低了內(nèi)存資源的消耗。

協(xié)程與并發(fā)

還有一種場景是 yield 使用非常多的,那就是「協(xié)程與并發(fā)」。

如果我們想提高程序的執(zhí)行效率,通常會使用多進(jìn)程、多線程的方式編寫程序代碼,最常用的編程模型就是「生產(chǎn)者-消費(fèi)者」模型,即一個進(jìn)程 / 線程生產(chǎn)數(shù)據(jù),其他進(jìn)程 / 線程消費(fèi)數(shù)據(jù)。

在開發(fā)多進(jìn)程、多線程程序時,為了防止共享資源被篡改,我們通常還需要加鎖進(jìn)行保護(hù),這樣就增加了編程的復(fù)雜度。

在 Python 中,除了使用進(jìn)程和線程之外,我們還可以使用「協(xié)程」來提高代碼的運(yùn)行效率。

什么是協(xié)程?

簡單來說,由多個程序塊組合協(xié)作執(zhí)行的程序,稱之為「協(xié)程」。

而在 Python 中使用「協(xié)程」,就需要用到 yield 關(guān)鍵字來配合。

可能這么說還是太好理解,我們用 yield 實(shí)現(xiàn)一個協(xié)程生產(chǎn)者、消費(fèi)者的例子: 

 
 
 
  1. # coding: utf8  
  2. def consumer():  
  3.     i = None  
  4.     while True:  
  5.         # 拿到 producer 發(fā)來的數(shù)據(jù)  
  6.         j = yield i   
  7.         print('consume %s' % j)  
  8. def producer(c):  
  9.     c.__next__()  
  10.     for i in range(5):  
  11.         print('produce %s' % i)  
  12.         # 發(fā)數(shù)據(jù)給 consumer  
  13.         c.send(i)  
  14.     c.close()  
  15. c = consumer()  
  16. producer(c)   
  17. # Output:  
  18. # produce 0  
  19. # consume 0  
  20. # produce 1  
  21. # consume 1  
  22. # produce 2  
  23. # consume 2  
  24. # produce 3  
  25. # consume 3  
  26. ... 

這個程序的執(zhí)行流程如下:

  1.  c = consumer() 創(chuàng)建一個生成器對象
  2.  producer(c) 開始執(zhí)行,c.__next()__ 會啟動生成器 consumer 直到代碼運(yùn)行到 j = yield i 處,此時 consumer 第一次執(zhí)行完畢,返回
  3.  producer 函數(shù)繼續(xù)向下執(zhí)行,直到 c.send(i) 處,這里利用生成器的 send 方法,向 consumer 發(fā)送數(shù)據(jù)
  4.  consumer 函數(shù)被喚醒,從 j = yield i 處繼續(xù)開始執(zhí)行,并且接收到 producer 傳來的數(shù)據(jù)賦值給 j,然后打印輸出,直到再次執(zhí)行到 yield 處,返回
  5.  producer 繼續(xù)循環(huán)執(zhí)行上面的過程,依次發(fā)送數(shù)據(jù)給 cosnumer,直到循環(huán)結(jié)束
  6.   最終 c.close() 關(guān)閉 consumer 生成器,程序退出

在這個例子中我們發(fā)現(xiàn),程序在 producer 和 consumer 這 2 個函數(shù)之間來回切換執(zhí)行,相互協(xié)作,完成了生產(chǎn)任務(wù)、消費(fèi)任務(wù)的業(yè)務(wù)場景,最重要的是,整個程序是在單進(jìn)程單線程下完成的。

這個例子用到了上面講到的 yield、生成器的 __next__、send、close 方法。如果不好理解,你可以多看幾遍這個例子,最好自己測試一下。

我們使用協(xié)程編寫生產(chǎn)者、消費(fèi)者的程序時,它的好處是:

  •  整個程序運(yùn)行過程中無鎖,不用考慮共享變量的保護(hù)問題,降低了編程復(fù)雜度
  •  程序在函數(shù)之間來回切換,這個過程是用戶態(tài)下進(jìn)行的,不像進(jìn)程 / 線程那樣,會陷入到內(nèi)核態(tài),這就減少了內(nèi)核態(tài)上下文切換的消耗,執(zhí)行效率更高

所以,Python 的 yield 和生成器實(shí)現(xiàn)了協(xié)程的編程方式,為程序的并發(fā)執(zhí)行提供了編程基礎(chǔ)。

Python 中的很多第三方庫,都是基于這一特性進(jìn)行封裝的,例如 gevent、tornado,它們都大大提高了程序的運(yùn)行效率。

總結(jié)

總結(jié)一下,這篇文章我們主要講了 yield 的使用方式,以及生成器的各種特性。

生成器是一種特殊的迭代器,它除了可以迭代數(shù)據(jù)之外,在執(zhí)行時還可以保存方法中的狀態(tài),除此之外,它還提供了外部改變內(nèi)部狀態(tài)的方式,把外部的值傳入到生成器內(nèi)部。

利用 yield 和生成器的特性,我們在開發(fā)中可以用在大集成的生成、簡化代碼結(jié)構(gòu)、協(xié)程與并發(fā)的業(yè)務(wù)場景中。

Python 的 yield 也是實(shí)現(xiàn)協(xié)程和并發(fā)的基礎(chǔ),它提供了協(xié)程這種用戶態(tài)的編程模式,提高了程序運(yùn)行的效率。


分享題目:Python進(jìn)階——如何正確使用yield?
URL鏈接:http://m.5511xx.com/article/cdhcdgd.html